你的位置:主页 > 教案课件 > 内容 在线投稿

随机抽样教案

发布: 2015-11-21 |  作者: admin |  浏览:

  一.知识点归纳

  1.简单随机抽样:设一个总体的个数为N。如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。实现简单随机抽样,常用抽签法和随机数表法 (1)抽签法

  制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,,然后将这些号签放在同一个箱子里,进行均匀搅拌;

  抽签:抽签时,每次从中抽出1个号签,连续抽取 次;

  成样:对应号签就得到一个容量为 的样本。

  抽签法简便易行,当总体的个体数不多时,适宜采用这种方法 (2)随机数表法

  编号:对总体进行编号,保证位数一致;

  数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

  成样:对应号签就得到一个容量为 的样本 结论:① 简单随机抽样,从含有N个个体的总体中抽取一个容量为 的样本时,每次抽取一个个体时任一个体被抽到的概率为 ;在整个抽样过程中各个个体被抽到的概率为 ;

  ② 基于此,简单随机抽样体现了抽样的客观性与公平性;

  ③ 简单随机抽样特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

  2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。

  系统抽样的步骤可概括为:(1)将总体中的个体编号。采用随机的方式将总体中的个体编号;

  (2)将整个的编号进行分段。为将整个的编号进行分段,要确定分段的间隔 .当 是整数时, ;当 不是整数时,通过从总体中剔除一些个体使剩下的个体数N´能被 整除,这时 ;

  (3)确定起始的个体编号。在第1段用简单随机抽样确定起始的个体边号 ;

  (4)抽取样本。按照先确定的规则(常将 加上间隔 )抽取样本: 。

  3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层 结论:(1)分层抽样是等概率抽样,它也是公平的。用分层抽样从个体数为N的总体中抽取一个容量为 的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于 ;

  (2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛 二.题型归纳

  题型1:简单随机抽样

  1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )

  A.1000名运动员是总体 B.每个运动员是个体

  C.抽取的100名运动员是样本 D.样本容量是100

  2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。

  问:① 总体中的某一个体 在第一次抽取时被抽到的概率是多少?

  ② 个体 不是在第1次未被抽到,而是在第2次被抽到的概率是多少?

  ③ 在整个抽样过程中,个体 被抽到的概率是多少?

  题型2:系统抽样

  3.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 .

  4.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为 .

  .题型3:分层抽样

  5.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,则三校分别抽取学生( )

  A.30人,30人,30人   B.30人,45人,15人

  C.20人,30人,10人  D.30人,50人,10人

  6.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是

  A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法

  C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法

  7.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:

  ①7,34,61,88,115,142,169,196,223,250;

  ②5,9,100,107,111,121,180,195,200,265;

  ③11,38,65,92,119,146,173,200,227,254;

  ④30,57,84,111,138,165,192,219,246,270;

  关于上述样本的下列结论中,正确的是 ( )

  A.②、③都不能为系统抽样 B.②、④都不能为分层抽样

  C.①、④都可能为系统抽样 D.①、③都可能为分层抽样

  8某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,则样本容量n为

  9.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= .

  10.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 。

本文标题:随机抽样教案 原文链接:http://www.msn11.com/article/34.html

     | 挑错 | 打印

    推荐内容

    本周热门